Fast multi-scale local phase quantization histogram for face recognition
نویسندگان
چکیده
Multi-scale local phase quantization (MLPQ) is an effective face descriptor for face recognition. In previous work, MLPQ is computed by using Short-term Fourier Transformation (SFT) in local regions and the high-dimension histogram based features are extracted for face representation. This paper tries to improve MLPQ based face recognition in terms of accuracy and efficiency. It has two main contributions. First, a fast MLPQ extraction algorithm is proposed which produces the same results with original MLPQ method but is about three times faster than the original one in practice. Second, a novel feature selection method combining Adaboost and regression is proposed to select the most discriminative and suitable features for the subsequent subspace learning. Experiments on FERET and FRGC ver 2.0 databases validate the effectiveness and efficiency of the proposed method. 2012 Elsevier B.V. All rights reserved.
منابع مشابه
Disguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition
Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...
متن کاملFace recognition using Weber local descriptors
This paper presents a method for face recognition using multi-scale Weber local descriptors (WLDs) and multi-level information fusion. Our method introduces the WLD, a novel and robust local descriptor, to describe the facial images and modifies it by a non-linear quantization approach to enhance its discriminative power. Moreover, a multi-scale framework for WLD extraction with multi-level inf...
متن کاملFace Recognition Using Histogram-based Features in Spatial and Frequency Domains
Previously, we proposed an efficient algorithm using vector quantization (VQ) histogram for facial image recognition in low-frequency DCT domains. In this paper, we newly utilize Local Binary Pattern (LBP) histogram in spatial domain. These two histograms, which contain both spatial and frequency domain information of a facial image, are utilized as a very effective personal feature. Publicly a...
متن کاملAn Improved Face Recognition Algorithm Using Histogram-Based Features in Spatial and Frequency Domains
In this paper, we propose an improved face recognition algorithm using histogram-based features in spatial and frequency domains. For adding spatial information of the face to improve recognition performance, a region-division (RD) method is utilized. The facial area is firstly divided into several regions, then feature vectors of each facial part are generated by Binary Vector Quantization (BV...
متن کاملKernel Fusion of Multiple Histogram Descriptors for Robust Face Recognition
A multiple kernel fusion method combining two multiresolution histogram face descriptors is proposed to create a powerful representation method for face recognition. The multi resolution histogram descriptors are based on local binary patterns and local phase coding to achieve invariance to various types of image degradation. The multikernel fusion is based on the computationally efficient spec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 33 شماره
صفحات -
تاریخ انتشار 2012